Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

J. Am. Chem. Soc. **2009**, ASAP Article Chong Han and Stephen L. Buchwald

Current Literature: 5/21/09 David Arnold Common Strategies Utilized for the Cross-Coupling of Secondary Alkyl Organometallic Reagents with Aryl Halides

1. Kumada Coupling (1972): Pd or Ni Catalyst RX R: aryl, vinyl; X = Cl, Br or I; Y = Cl or Br 2. Suzuki Coupling (2000): Pd Catalyst R: alkyl, hetero-aryl, ether, ester, ketone, nitro... X: CI, Br or I M: -B(OH)₂, -B(OR)₂, -BF₃K 3. Negishi Coupling: Pd Catalyst ZnY R: alkyl, hetero-aryl, ether, ester, ketone, aldehyde...

Pioneering Work by Kumada and Hayshi: Mechanistic Considerations for Kumada / Suzuki / Negishi Couplings

* Proper Ligand Selection is Key!

J. Am. Chem. Soc. 1984, 106, 158.

Kumada Coupling: Catalyst, Ligand and Scope

- Catalyst Screening: Ph Ph Br 99.07° Pd 87.8° 1 mol % Catalyst MgCI Fe Ether. rt. 1-48 h Ph B С % Yield Determined by GC Catalyst Bond Angles, deg Temp (°C) Catalyst Time (h) A (%) C (%) Entry B (%) P-Pd-P CI-Pd-CI PdCl₂ (dppf) rt 1 95 0 0 99.07 87.8 1 2 PdCl₂ (dppp) 90.6 90.8 rt 24 43 19 23 PdCl₂ (dppe) 3 rt 48 0 4 85.8 94.2 0 PdCl₂ (PPh₃)₂ 4 rt 24 5 6 80 NiCl₂ (dppp) 5 rt 23 29 3 63 NiCl₂ (PPh₃)₂ 6 rt 23 3 5 88 1 mol % PdCl₂ (dppf) MgCI RBr Ether, rt, 8-20 h Ŕ CF₃ OMe 75% 58% 72% 80% 97%
- Use of the PdCl₂ (dppf) catalyst successfully suppressed byproducts resulting from β-hydride elimination.
- Substrate scope is limited to halide coupling partners compatible with Grignard reagents. J. Am. Chem. Soc. 1984, 106, 158.

CI

Cl

Ph

Suzuki Cross-Coupling Reactions: Scope and Present Limitations

• Initial Reports:

• Recent Work by Molander:

J. Am. Chem. Soc. 2008, 122, 4020.

Suzuki Cross-Coupling Reactions: Scope and Present Limitations

- Good Functional Group Compatibility: Alkyl, Aryl, Het-Aryl, Ether, Ester, Ketone, Nitro, and Trifluoromethyl; Does Not Work With Cyano Substituents
- Limitations: Moderate Selectivities for *i*-Pr vs. *n*-Pr, Sensitive to electronic and steric factors *J. Am. Chem. Soc.* **2008**, *122*, 4020.

David Arnold @ Wipf Group

Negishi Coupling: New Uses for Old Ligands

• Early Reports from Kumada (1984):

J. Am. Chem. Soc. 1984, 106, 158.

• 20 Years Later... the same methodology was applied to the racemic synthesis of bisabolene natural products which are components of many plant essential oils and many have been found to have a range of biological activities.

J. Org. Chem. 2004, 7, 2461.

Title Paper: Ligand Screening on Problematic Substrates

• The new CPhos ligand showed excellent conversions and selectivity for the desired branched products.

Title Paper: Substrate Scope and Isomeric Product Ratios Employing the CPhos Ligand

				N	Me		
\square	X Me + Me ZnBr —	Pd(OAc) ₂ (1 mo L6 (2 mol %) THF (0.25 M)	ol%) ──≻	\square	Ме +	Me	
н (1.0 mmo	i) (1.2 mmoi)	rt, 30 min		н Р1	н	P2	
	, , ,						
entry	ArX				yield ^a	P1:P2	
1	R = 4-OMe, X =	= Br			92%	37:1	
2	R = 4-Ph, $X = 1$	Br			95%	39:1	
3	$R = 4-CO_2Me$		X =	Br	94% ^b	46:1	
			X =	Cl	98% ^{b,c}	45:1	
4	R = 4-CN		X =	Br	87% ^b	59:1	
			X =	Cl	94% ^b	43:1	
5	R = 4-CHO		X =	Br	89% ^b	43:1	
			X =	Cl	93% ^b	47:1	
6	$R = 4 - NO_2, X =$	Br			50% ^{b,d}	28:1	
7	R = 2-OMe, X =	= Br			97%	27:1	
8	R = 2-Ph, X = 1	Br			97% ^c	22:1	
9	$R = 2-CO_2Me$		X =	Br	91% ^b	37:1	
			X =	CI	97% ^{b,e}	30:1	
10	R = 2-CN		X =	Br	89% ^b	20:1	
			X =	Cl	$94\%^{b,c}$	22:1	
11	R = 2-SMe, $X =$	= Br			95% ^f	30:1	
12	5-bromoindole				96%	58:1	

^{*a*} Isolated yields of mixtures of *i*-Pr and *n*-Pr products; average of at least two runs. ^{*b*} Toluene employed as a cosolvent. ^{*c*} Rt, 3 h. ^{*d*} 0 °C, 30 min. ^{*e*} Rt, 6 h. ^{*f*} Rt, 1 h.

- Excellent yields and selectivities for branched products
- Good functional group tolarance

Title Paper: Substrate Scope Continued

^{*a*} Isolated yields; average of two runs. ^{*b*} Reaction conducted in THF. ^{*c*} 2 mol % Pd(OAc)₂ and 4 mol % CPhos. ^{*d*} The alkylzinc reagent (1.5 equiv) was slowly added over 30 min. ^{*e*} 23:1 branched/linear.

• The optimized reaction works well with sterically hindered, electron deficient and heteroaromatic aryl bromides and chlorides.

• Cyclic and acyclic zinc reagents were demonstrated to be good coupling partners.

Mechanistic Considerations

• Since different product ratios are observed between the coupling of *i*-PrZnBr and *n*-PrZnBr to the aryl bromide for each ligand, the product ratio of branched to linear products is determined by the relative rates of reductive elimination vs. β -hydride elimination – reinsertion.

Conclusion

• The authors have designed a new and efficient catalytic system for Negishi couplings of secondary alkylzinc halides with aryl bromides and activated chlorides.

• The coupling reaction shows good functional group tolerance and wide substrate scope.

• The introduction of the new CPhos ligand has allowed for excellent reaction selectivity for branched vs. linear coupling products by suppressing the undesired β -hydride elimination pathway competitive in these reactions.

